‘ SGS-THOMSON
Y/ (CR0ELECTRONICS APPLICATION NOTE

CASCADING FUZZY MODULES WITH ST6 fUZZYTECH

By Lionel Picandet/Lim King Soon

INTRODUCTION

Note: This note requires knowledge of the ST6 fuzzyTECH fuzzy logic development tool and
Software development tools and should be read in conjunction with the appropriate
documentation.

It may seem as though it is is not possible to directly design several fuzzy modules with the
ST6 fuzzyTECH graphic tool as from this point of view the ST6 fuzzyTECH tool can generate
only one fuzzy module at a time. Therefore only one fuzzy project can be debugged at a time.

Nevertheless sometimes 2 fuzzy modules are needed to be included in the same application.

It is possible to do this without modifying greatly the ST6 files generated by the ST6
fuzzyTECH tool. Keep in mind that these modules cannot work at the same time.

AN598/1294 1/16

CASCADING FUZZY MODULES

1 THE CONFIGURATION TECHNIQUES
We can consider two configurations as shown in the figures below:

Figure 1 : Modules with Independant Time Periods

2 MobL >
T1

in3 out2

" Amonz | >
; v T2

Figure 2 : Modules with Sequential Operation

| MOD1

In the first configuration the two fuzzy modules are independant. They can work sequentially
or in different time periods.

In the second configuration the two fuzzy modules cannot be executed at the same time but
they are however dependant. For example the first module can work at the beginning of the
application, then stop and give information to the second module which starts and runs until
the end of the process.

In this application note we describe 2 solutions to implement 2 fuzzy modules in the same
application (as shown in the second configuration):

The first solution is easier to implement because it demands modification to only the
USER.ST6 program. However its main drawback is that it includes the FUZZYLIB.ST6 library
twice.

The second solution requires modification of the source files generated by the ST6
fuzzyTECH tool, but it has the advantage of including the FUZZYLIB.ST®6 library only once.

2/16 (N7 5GS-THOMSON
Y. RiICHOELECTRONICE

CASCADING FUZZY MODULES

1.1 First solution

ST6 procedure

This solution is described in the \FTEXPST6\SAMPLES\MYPROJCASCADE directory as a
generic example.

To build the program you need:

® FUZZYLIB.ST6 fuzzy library

® MOD1.ST6 generated by fuzzyTECH MST6 (Source-File)
= MOD1.INC generated by fuzzyTECH MST6 (Include-File)
= MOD2.ST6 generated by fuzzyTECH MST6 (Source-File)
= MOD2.INC generated by fuzzyTECH MST6 (Include-File)
® USER1.ST6 generated by user

® USER2.ST6 generated by user

ST6 files description

The example described in the fuzzy package takes into account two independant fuzzy
modules.

Several warnings must be noted:

® The program is mapped into page 0 and 1. Because there is not enough space to map
windows in section 0, we have created a section 1 with just one instruction to be able to
place data windows.

® As the two fuzzy modules do not work at the same time, fuzzy variables are located in the
same place ("ftstart” is equal to the same value in the two modules). However the user has
the option to avoid overlapping addresses of the fuzzy variables simply by changing their
RAM address. If you define user variables relatively to ftend, take the "ftend” symbol with
the greater value to avoid overwriting the user variables with fuzzy variables.

®m The fuzzy library FUZZYLIB.ST6 is included in every fuzzy module, so ROM space is
wasted.

FUZZYLIB.ST6

The fuzzyTECH kernel for the ST6 microcontroller family. This kernel contains configurable
modules for fuzzification, defuzzification and rule inference. The FUZZYLIB.ST6 file comes
with the the fuzzyTECH ST6 Explorer Edition in the \LIB subdirectory.

MOD1.ST6

The output file of the ST6 Explorer Edition precompiler. Nothing can be modified in this file to

fit the ST6 application.
MODL1.INC

N7 5G5-THOMSON 3/16
Y. RiICHOELECTRONICE

CASCADING FUZZY MODULES

Also generated by the ST6 Explorer Edition precompiler. MOD1.INC contains public variable
definitions for the fuzzy logic system function. You have to include this file in USER1.ST6.
Nothing can be modified in this file to fit the ST6 application.

MOD2.ST6

The output file of the ST6 Explorer Edition precompiler. Nothing can be modified in this file to
fit the ST6 application.

MOD2.INC

Also generated by the ST6 Explorer Edition precompiler. MOD2.INC contains public variable
definitions for the fuzzy logic system function. You have to include this file in USER2.ST6.
Nothing can be modified in this file to fit the ST6 application.

USER1.ST6

Your main program, containing all interfaces and pre- and post-processing of input and output
data of the first fuzzy module.

MOD1.ST6.

This file included in the \FTEXPST6\SAMPLES\MYPROJ subdirectory has been copied to the
\FTEXPST6\SAMPLES\MYPROJCASCADE subdirectory and then modified to fit the
program:

VERS "ST62xx”
.ROMSIZE 2
INPUT "mod1.inc”
.EXTERN initmodl, modl
.EXTERN cascade
.PP_ON
.SECTION 0
jrmmm e define used registers ---------------m----

a .DEF OFFH

jmmmmmmmmmeneaes entry point in the user program --------------

4/16 (N7 5GS-THOMSON
Y. RiICHOELECTRONICE

CASCADING FUZzZY MODULES

jmmmmm e user initializations ---------------------
call initmod1

jmmmmmmmmemnenmeeee loop on fuzzy routines -------------------

loop1l:
Idi IvO_in1, 020h ; give inputs to Fuzzy (examples)
Idi Ivl_in2, 040h
Idi Iv2_in3, 080h
call modil ; call fuzzy routines
Id a, invalidflags
jmz no_firel ; test if a rule fire
ip loopl
no_firel:
Id a, Iv3 outl ; crisp result is stored in Iv3_outl
cpi a, Offh
jrz fuzzl_achieved
ip loopl

fuzzl_achieved

ip cascade

; jump to the second fuzzy module

—— =N D Y —

.SECTION

nop

1

jmmmmmmmmmmmemneneas No interrupt handle routines ----------------

.SECTION 32
adc nop
reti
timer nop
reti
portbc nop
reti
porta nop
reti
.block 4
nmi nop
reti
reset ip main

5/16

£ ~THOMSON
Y. RiICHOELECTRONICE

CASCADING FUZZY MODULES

USER2.ST6

The file containing all interfaces and pre- and post-processing of input and output data of the
second fuzzy module MOD2.ST6.

This file included in the \FTEXPST6\SAMPLES\MYPROJ subdirectory has been copied to the
\FTEXPST6\SAMPLES\MYPROJ\CASCADE subdirectory then modified to fit the program.

VERS "ST62xx"
.ROMSIZE 2
ANPUT "mod2.inc”

.EXTERN initmod2, mod2
.GLOBAL cascade

.PP_ON

.SECTION 0
e m e define used registers --------------nmnoo-
a .DEF OFFH

; we have to define the output variable of the first module again
; in this module because we use it

Iv3_outl .DEF ftstart + O003H ; crisp i/lo variable

jmmmmmmmmemnenmeneee user initializations ---------------------

call initmod2

jmmmmmmmmemnenmeneee loop on fuzzy routines --------------------

Id a,Ilv3_outl ; because the two modules are located in
Id Iv3_in7, a ; the same place we have to deal with this
; output variable first

Idi IvO_in4, 020h ; give inputs to Fuzzy (examples)
Idi Iv1_in5, 040h

Idi Iv2_in6, 060h

call mod2 ; call fuzzy routines

Id a, invalidflags

jmz no_fire2 ; test if a rule fire
ip loop2

6/16 (N7 5GS-THOMSON
Y. RiICHOELECTRONICE

CASCADING FUZZY MODULES

no_fire2
Id a, Ilv4_out2 ; crisp result is stored in Iv4_out2
ip loop2 ; jump direct (closed loop)
ret

CASCADE1.BAT

This is an example of the required build procedure.

1.2 Second solution

The second solution is more restrictive than the first solution.
ST6 procedure

This solution is described in the \FTEXPST6\SAMPLES\MYPROJCASCADE directory as a
generic example.

To build the program you need:

® FUZZYLIB.ST6 fuzzy library

= MOD3.ST6 generated by fuzzyTECH MST6 (Source-File)
= MOD3.INC generated by fuzzyTECH MST6 (Include-File)
= MOD2.ST6 generated by fuzzyTECH MST6 (Source-File)
= MODZ2.INC generated by fuzzyTECH MST6 (Include-File)
® USER3.ST6 generated by user

The fuzzy linguistic variables for both modules 2 and 3 are located at the same RAM space by
the ST6 fuzzyTECH tool. In order to use this solution with the overlapping RAM space, the
user has to make one modification. That is, if the number of linguistic input variables are
different for

both modules, the user has to relocate the RAM register "invalidflags” to the end of the
register definition.

This modification will not be necessary if the number of input variables used for both modules
are the same. However the user has the option to avoid overlapping addresses simply by
changing the RAM address of the fuzzy linguistic variables from second module. In this case
the contents of the linguistic variables of the first module will not be overwritten while
executing the second.

Due to the duplication of the fuzzy library in every module the first solution wastes a lot of
ROM space. To avoid the duplication of the fuzzy library the source files generated by the ST6
fuzzyTECH tool need to be modified. The approach is to concentrate all the calls to the fuzzy
library routines within one module.

The steps are as follows:

N7 5G5-THOMSON 7116
Y. RiICHOELECTRONICE

CASCADING FUZZY MODULES

m append the module with the smallest size of data RAM to the greatest one (to do this look at
every .INC files and compare their FTEND symbols).

m append the linguistic variables defined in the .INC file of the second module (the module
with the smallest size of data RAM) to the .INC file of the first one.

= rename the data RAM registers fuzout in either module using a different name as before.

m delete the duplicated register definition in the module that has the smallest amount of data
RAM because these registers have been defined earlier.

= rename the lookup tables (rtO, rtl ,.. , xcom , tptsl..) from the second module using different
names as before.

m delete the include file of the library in the second module

= verify call directives to fuzzy library for the second module; if call directives are equal, delete
the call directives to this module; if call directives are different, add extra call directives to
the first module and delete the call directives to this module and rename the label
parameters used in the called routine.

® change the RAM registers "fuzout” in the modified module using the modified name
whenever it has been called

® change the calling of the tables in the second module according to the modified names
made previously.

m delete the initialization routine of the second module because it is exactly the same as the
first module.

ST6 files description

The example described in the fuzzy package takes into account two independant fuzzy
modules. To make the difference between the first solution and the second one we have
renamed the generated source file MOD1.ST6 to MOD3.ST6.

FUZZYLIB.ST6

The fuzzyTECH kernel for the ST6 microcontroller family. This kernel contains configurable
modules for fuzzification, defuzzification and rule inference. The FUZZYLIB.ST6 file comes
with the fuzzyTECH ST6 Explorer Edition in the \LIB subdirectory.

MOD3.ST6

The output file of the ST6 Explorer Edition precompiler. Call directives to fuzzy library kernel of
the second module must eventually be added to this one. This is the file with the greatest
amount of data RAM.

8/16 (N7 5GS-THOMSON
Y. RiICHOELECTRONICE

CASCADING FUZzZY MODULES

S<<x®

drwr

fvs
fuzvals
fuzout
fuzoutl

crisp
rulecnt
otcnt
x1

X3
incnt
firecnt
aslope
curmin
curmax
fireval
icnt
itcnt
numl
outcnt
numh
numext

.DEF
.DEF
.DEF
.DEF

.DEF 083H

.DEF

.PP_ON
W _ON
NOTRANSMIT

OFFH
080H
081H
082H

0CY9H

ANPUT
.TRANSMIT

"MOD3.INC”

.DEF ftstart + 005H

reserved locations for ST6 fuzzyTECH kernel

.DEF
.DEF
.DEF
.DEF
.DEF
.DEF

.DEF ftstart + O05H

.DEF ftstart + 014H

ftstart
ftstart
ftstart
ftstart
ftstart
ftstart

name mapping ---

.DEF varl
.DEF varl
.DEF varl

.DEF
.DEF

var2
var2

.DEF var2

.DEF var2

.DEF var3

+++ 4+ ++

019H
01AH
01BH
01CH
01DH
O1EH

.DEF var3
.DEF var3
.DEF var3

.DEF var4
.DEF var4

.DEF

var4d

.DEF var4
.DEF var5
.DEF var6

term definition

(Huz(v)als (s)tart

; nothing is changed in this part

‘ﬁ $GS-THOMSON

HICRGELECTRONICS

.DEF ftstart + (value depends on second module)

9/16

CASCADING FUZZY MODULES

module

fmax
max
fmin
min
com
mom

----- defines for included kernel ----------e-mn---

; eventually add extra call directives for

EQU 0
EQU 0
EQU 0

EQU 1

EEQU 0
EQU 0

.SECTION 0

the second

INPUT "FUZZYLIB.ST6” ; fuzzyTECH kernel for ST6

—————— fuzzy controller function -----------------

; nothing is changed in this part

.GLOBAL mod1
.GLOBAL initmod1

cs_tptsl

cs_rtl3:

10/16

; delete register definition

————————— term definition --------------m-momomeee-

; rename the window symbols

.WINDOW

.BYTE 00000H, 00000H, 0003FH, 00004H
.BYTE O007EH, 00004H, OOOFFH, OOOOOH

WINDOWEND

----------- rule table ---------------emooemeeo

.WINDOW

.WINDOWEND
.WINDOW

WINDOWEND

£ ~THOMSON
Y. RiICHOELECTRONICE

CASCADING FUZZY MODULES

xcom table (defuzzification)

WINDOW
cs_xcom:
.WINDOWEND
jmmmmmmmmmmemneaeas fuzzy controller function --------------------
mod2:
jmmmmm oo fuzzification -
; nothing is changed in this part
jmmmmmm e mmmememememeees inference -------------mememeeeeeeeeee
; rename window symbols
Idi drwr, cs_rtO.w
Idi vy, cs_rt0.d
call Min ; min aggregation
Idi drwr, cs_rtl3.w
Idi vy, cs_rt13.d
call Min ; min aggregation
jmmmmmmmmm oo defuzzification ---------------------=-----
clr invalidflags
Idi drwr, cs_xcom.w
Idi vy, cs_xcom.d
Idi x, fuzoutl ; rename “fuzout” in "fuzoutl”
Idi Iv4_out2, 080H
Idi otcnt, O3H
call com
Id Iv4 _out2, a
ret ; end of fuzzy controller
.GLOBAL mod?2
MOD3.INC

Also generated by the ST6 Explorer Edition precompiler. MOD3.INC contains public variables
definitions for the fuzzy logic system function. You have to include this file in USER3.ST6 file.
You have to append the linguistic variables definition of the second module to this file.

11/16

£ ~THOMSON
Y. RiICHOELECTRONICE

CASCADING FUZZY MODULES

ifc ndf ftstart
ftstart .EQU 0084H ; 1st free RAM byte
.endc

jmmmmmmm s input/output interface of controller ------------

IvO_inl .DEF ftstart + O0O0OH ; crisp i/o variable
vl in2 .DEF ftstart + 001H ; crisp i/o variable
Iv2_in3 .DEF ftstart + 002H ; crisp i/o variable
Iv3 outl .DEF ftstart + O03H ; crisp i/o variable
invalidflags .DEF ftstart + 004H

jmmmmm e auxilary variables for multiplication -----------

m_res .DEF ftstart + O1FH
| _res .DEF ftstart + 020H
counter .DEF ftstart + 021H
opl .DEF ftstart + 021H
op2 .DEF ftstart + 022H
m_opl .DEF ftstart + 023H
| opl .DEF ftstart + 024H
save_a .DEF ftstart + 025H
remaind .DEF ftstart + 026H

jmmmmmmmmm e 1st free location in data space ----------------
ftend .EQU ftstart + 027H

: add variables definition of the second module

jmmmmmmm e input/output interface of controller ---------------

IvO_in4 .DEF ftend + OOOH ; crisp i/o variable
Ivl_in5 .DEF ftend + 001H ; crisp i/o variable
Iv2_in6 .DEF ftend + 002H ; crisp i/o variable
Iv3_in7 .DEF ftend + 003H ; crisp i/o variable
Iv4_out2 .DEF ftend + 004H ; crisp i/o variable
MOD2.ST6

The output file of the ST6 Explorer Edition precompiler. You have to append this file to the
MOD3.ST6 file.

MOD2.INC

12/16 THOMSO
‘7’. @mu

CASCADING FUZzZY MODULES

Also generated by the ST6 Explorer Edition precompiler. MOD2.INC contains public variable
definitions for the fuzzy logic system function. You have to put the linguistic variables definition
of this file into the MOD3.INC file.

USER3.ST6

Your main program, containing all interfaces and pre- and post-processing of input and output
data of the two fuzzy modules.

This file, included in the \FTEXPST6\SAMPLES\MYPROJ subdirectory, is copied to the
\FTEXPST6\SAMPLES\MYPROJNCASCADE subdirectory and then modified to fit the
program.

.VERS "ST62xxX"
.ROMSIZE 2
UANPUT "mod3.inc”

.EXTERN initmod1, modl , mod?2

.PP_ON

.SECTION 0
jmmmmmmmmmneeeeeeee define used registers --------------------
a .DEF OFFH

jmmmmmmmmm e entry point in the user program --------------

main

jmmmmmmmmmmmmneeenen exit from the reset status -----------------
reti

jmmmmmmmmm oo user initializations --------------------
call initmodl

jmmmmmmmmemeeeeeane loop on fuzzy routines -------------------

loopl:

Idi IvO_in1, 020h ; give inputs to Fuzzy (examples)
Idi Iv1_in2, 040h

Idi Iv2_in3, 080h

call modl ; call fuzzy routines

Id a, invalidflags

Lyg 5GS-THOMSON 13116
Y. RiICHOELECTRONICE

CASCADING FUZZY MODULES

jmz no_firel ; test if a rule fire
ip loopl
no_firel
Id a, Iv3_outl ; crisp result stored in Iv3_outl
cpi a, Offh

jrz fuzzl_achieved
ip loopl
fuzzl_achieved
call initmod1l
jmmmmmmmmmmnenmemeee loop on fuzzy routines -------------------
Idi IvO_in4, 020h ; give inputs to Fuzzy (examples)
Idi Iv1_in5, 040h
Idi Iv2_in6, 060h

Id a, Ilv3 outl
Id Iv3_in7, a

call mod2 ; call fuzzy routines
Id a, invalidflags
jmz no_fire2 ; test if a rule fire
ip loop2
no_fire2:
Id a, Ilv4 out2 ; crisp result stored in Iv4_out2
ip loop2 ; jump direct (closed loop)
jmmmmmm e END MAIN ----memmmmmmmmm oo

; tips to map windows as there is not enough space to map them in
section 0

.SECTION 1
nop

e No interrupt handle routines ----------------
SECTION 32

adc nop
reti

timer nop
reti

portbc nop
reti

porta nop

14/16 THOMSO
‘7’. @mu

CASCADING FUZzZY MODULES

reti
.block 4

nmi nop
reti

resetjp main

CASCADE2.BAT

This is an example of the required build procedure.

15/16

£ SGS-THOMSON
Y. RiICHOELECTRONICE

CASCADING FUZZY MODULES

2 SUMMARY

This application note demonstrates practical techniques for using two fuzzy logic modules
produced by the ST6 fuzzyTECH EXPLORER EDITION fuzzy logic development tool into one
application. Code and examples are supplied for the ST6 microcontroller.

THE SOFTWARE INCLUDED IN THIS NOTE IS FOR GUIDANCE ONLY. SGS-THOMSON SHALL NOT BE HELD
LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS
ARISING FROM USE OF THE SOFTWARE.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics
assumes no responsability for the consequences of use of such information nor for any infringement of
patents or other rights of third parties which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as
critical components in life support devices or systems without the express written approval of
SGS-THOMSON Microelectronics.

[J 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of 1°C Components by SGS-THOMSON Microelectronics, conveys a license under the Philips
I’C Patent. Rights to use these components in an I°’C system, is granted provided that the system
conforms to the 1°C Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom -
U.S.A.

16/16 THOMSO
‘7’. @mu

